Cosmology with RCSLenS

Ami Choi

in collaboration with many, including C. Heymans, H. Hildebrandt, C. Blake, S. Joudaki, M. Viola, T. Erben, L. Miller, L. van Waerbeke, A. Buddendiek, J. Harnois-Deraps, B. Joachimi, T. Kitching, R. Nakajima, T. Troester, A. Hojjati

Diving into the Dark, Cairns Thursday, July 21 2016

Overlapping Datasets CFHTLenS + BOSS, RCS + BOSS, WiggleZ

BOSS DR10 NGP

CFHTLenS

BOSS

CFHTLenS/RCSLenS

154	effective area after removing overlaps and masks (deg ²)	572
I 54	effective area w/ photo-z after removing overlaps and masks (deg ²)	384
0.9 (0.7)	median redshift (eff. lens. sample)	0.6 (0.4)
	overlap w/WiggleZ (deg ²)	181
87	overlap w/BOSS DR10 (deg ²)	184
~ 4 ()	effective galaxies/ arcmin ²	~8 (5.5)

Accepted/submitted

- Testing gravity through E_G Blake+2015 (arXiv: 1507.03086)
- Large-scale galaxy-matter correlations Buddendiek+2015 (arXiv:1512.03625)
- Testing n(z) through angular cross-correlations
 Choi+2015 (arXiv: 1512.03626)
- Cosmic distances from shear ratios Kitching+2015 (arXiv: 1512.03627)
- Description of survey and pipeline Hildebrandt, Choi +2016 (arXiv: 1603.07722)
- Cross-correlation with CMB lensing Harnois-Deraps+2016 (arXiv: 1603.07723)

In preparation

- Cross-correlation with tSZ— Hojjati, Troester+2016
- Cross-correlation with gamma-rays—Troester+2016
- Cosmic shear & systematics (longer time-scale)
 - 4-filter photo-z without *u*-band not ideal
 - single-exposure surveys not ideal

NOTE: Catalogues with redshifts and shapes publicly available at CADC (many thanks to Stephen Gwyn) see link at <u>http://arxiv.org/abs/1603.07722</u> and via <u>www.rcslens.org</u> Testing n(z) through angular cross-correlations between spec-z and photo-z surveys

— Choi+2015 (arXiv: 1512.03626)

0.3 < z < 0.5

0.5 < z < 0.7

Let's say we have a way to estimate photo-z, with a probability distribution p(z) and corresponding single estimate z_B .

Use estimate of the photometric redshift distribution p(z) to determine 'contamination' fraction of given redshift bin.

observed # gals in photo-z bin j

photo-z

true # gals in photo-z bin j with spec-z in bin i P(z) z

Choi+2015 arXiv/1512.03626

subscript *ij* : *i* is spectroscopic redshift bin, *j* is photometric redshift bin

Multiply observed data points of $w_{11}(\theta)$ by the contamination fraction to model $w_{12}(\theta)$.

Choi+2015 arXiv/1512.03626

subscript *ij* : *i* is spectroscopic redshift bin, *j* is photometric redshift bin

Multiply observed data points of $w_{11}(\theta)$ by the contamination fraction to model $w_{12}(\theta)$.

Compare with the observed data points of $w_{12}(\theta)$.

Choi+2015 arXiv/1512.03626

propagate to cosmology

Summary

Catalogues with redshifts and shapes publicly available at CADC

