

AGN with the Parkes-Tidbinbilla Interferometer

Working with Bruce Slee, 1988-95

Elaine Sadler
University of Sydney / CAASTRO

17 August 2016

Where I was in 1988...

- Just arrived back in Australia from the USA
- Staff astronomer at the AAO in Sydney
- Early days of multi-object spectroscopy
- Working on galaxy dynamics, and a new (large) project on kinematics and metal abundances of stars in the Galactic bulge
- But still interested in radio astronomy...

AUTOFIB FIELD CONFIGURATION: SEXTANS_APR91_

66 Pivots, 130 Objects, TD= 2000, BD= 4500, $\theta_{\rm G}$ = 7.5, $\theta_{\rm O}$ = 7.5, TL= 265000

Elliptical galaxies - optical

E. M. Sadler and O. E. Gerhard

Line-strength gradients in elliptical galaxies 669

Elliptical galaxies had a violent past, and formed by successive mergers of smaller galaxies

[Sadler & Gerhard 1985] >50% of nearby ellipticals contain "dust-lanes" of debris from smaller galaxies captured in the past.

[Davies, Sadler & Peletier 1993] Spectroscopic measurements "support the hypothesis that *giant ellipticals form by... mergers*, and that the line-strength gradients originate in their lower-mass progenitors which formed predominantly by stellar collapse".

Stellar populations are **old** - why did these galaxies stop forming stars billions of years ago?

Elliptical galaxies – radio

Some galaxies are enormously energetic sources of radio waves, and are so luminous that they can be seen to huge cosmic distances.

Two questions from my PhD thesis:

- Why are most of the powerful radio sources found in giant elliptical galaxies, rather than in spiral galaxies or dwarfs?
- Since elliptical galaxies appear to be a very homogeneous class in their optical properties, why are some of them radio sources while others are not?

Elliptical galaxies – radio

E. M. Sadler, C. R. Jenkins and C. G. Kotanyi

Almost all bright elliptical galaxies are radio continuum sources at some level - this is not a rare or exotic phenomenon

[Sadler, Jenkins & Kotanyi 1989] For sensitive observations, the radio detection rate of the most massive nearby elliptical galaxies is close to 100%.

The radio sources in nearby E/SO galaxies become increasingly *core-dominated* at lower radio luminosity – i.e. most of the radio emission is coming from the central few kpc.

What physical process powers these low-luminosity radio sources?

The Parkes-Tidbinbilla Interferometer

Parkes 64m dish

Operated 1986-98

- World's longest real-time radio interferometer
- Single 275km baseline
- Original aim ATCA calibrators

(Norris & Kesteven 2013)

Microwave link

Tidbinbilla 70m dish

Observing modes:

Frequency 1.7, 2.3, 8.4 GHz **Resolution** 0.13, 0.09, 0.03 arcsec

Figure 1. Histogram of total 5-GHz radio power for elliptical and S0 galaxies in samples A (low power) and B (medium power).

PTI observations 1988-91

(with Bruce Slee, Ron Ekers and John Reynolds)

Observed:

- 67 nearby E/S0 galaxies with 'low-luminosity' radio emission (10²⁰ 10²³ W/Hz at 5 GHz)
- 91 more powerful radio galaxies (10²²
 10²⁶ W/Hz at 5 GHz)

PTI observations at two frequencies, 2.7 and 8.4 GHz

(Slee et al. 1994)

1994MNRAS.269..928S

Mon. Not. R. Astron. Soc. 269, 928-946 (1994)

Parsec-scale radio cores in early-type galaxies

O. B. Slee, ¹ Elaine M. Sadler, ^{2,3} J. E. Reynolds ¹ and R. D. Ekers ¹

¹ Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 2121, Australia

Accepted 1994 March 18. Received 1994 March 16; in original form 1993 October 1

Mon. Not. R. Astron. Soc. **276**, 1373–1381 (1995)

Parsec-scale radio cores in spiral galaxies

Elaine M. Sadler,¹ O. B. Slee,² J. E. Reynolds² and A. L. Roy^{1,2}

¹School of Physics, University of Sydney, NSW 2006, Australia

Accepted 1995 May 19. Received 1995 May 18; in original form 1995 March 6

² Anglo-Australian Observatory, PO Box 296, Epping, NSW 2121, Australia

³ School of Physics, University of Sydney, NSW 2006, Australia

² Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 2121, Australia

What we found...

Slee, Sadler, Ekers & Reynolds 1994

ABSTRACT

We find compact (< 0.03 arcsec) radio-continuum cores in about 70 per cent of radio-emitting elliptical and S0 galaxies over a wide range in total radio power (10^{21} – 10^{26} W Hz⁻¹ at 5 GHz). The cores usually have a flat or rising spectrum between 2.3 and 8.4 GHz, with a median spectral index of +0.3. Even at low luminosities, the radio emission from most elliptical galaxies appears to be powered by a parsec-scale 'engine' like those in classical radio galaxies and quasars. The core and total radio power are related ($P_{\rm core} \propto P_{\rm total}^{0.7}$ on average), and the parsec-scale cores of radio galaxies are typically one hundred times more powerful than those in 'normal' giant elliptical galaxies.

i.e. Most low-luminosity radio sources in nearby E/S0 galaxies are powered by black holes in the same way as the 'central engines' of the most powerful radio galaxies!

Figure 3. Detection of PTI cores as a function of total radio power at 5 GHz. Since only five galaxies with $P_{\text{total}} < 10^{21} \text{ W Hz}^{-1}$ were observed, the low detection rate in the leftmost bin may not be significant.

Writing the papers...

Bruce would leave me detailed notes about what needed doing next - this one is from October 1992.

Interpreting the radio spectra

Most PTI cores have flat or rising radio spectra

(Slee et al. 1994)

What produces the observed radio spectra?

Main contenders are:

Synchrotron self-absorption:

For a typical low-power source with turnover frequency above 5 GHz, require either strong magnetic fields (~0.1 G) or far from equipartition. In either case, cores must be < 1 mas in size

Free-free absorption

Know that ionized gas in generally present – would need $\sim 10^4$ solar masses of ionized gas within ~ 4 pc of the centre. Need more detailed spectral coverage over a wide frequency range.

Still an open question over 20 years later! (see Joe Callingham's talk)

Number of cores

Interpreting the radio spectra

Nearby low-power radio AGN, IC 1459

(Tingay et al. 2015)

What produces the observed radio spectra?

Main contenders are:

Synchrotron self-absorption:

For a typical low-power source with turnover frequency above 5 GHz, require either strong magnetic fields (~0.1 G) or far from equipartition. In either case, cores must be < 1 mas in size

Free-free absorption

Know that ionized gas in generally present – would need $\sim 10^4$ solar masses of ionized gas within ~ 4 pc of the centre. Need more detailed spectral coverage over a wide frequency range.

Still an open question over 20 years later! (see Joe Callingham's talk)

Conclusions

- It was enjoyable (and inspirational) to work on this project with Bruce
- Our paper (Slee et al. 1994) helped to bring AGN into mainstream studies of galaxy evolution, and remains well-cited today
- The PTI, as a single baseline radio interferometer, was extremely successful – with 24 journal papers published (including 3 in Nature)

"A next-generation single- baseline instrument could be built using ASKAP and the Parkes antenna equipped with a phased-array feed... Such an instrument would be a powerful resource for identifying which populations of galaxies contained AGN." (Norris & Kesteven 2013 PASA)

Future: Spectral-line VLBI?

A phased-array feed (PAF) at Parkes operating down to 700 MHz opens up exciting possibilities for **spectral-line VLBI on a PKS-ASKAP baseline**. Spatial resolution would be ~25 mas (0.025 arcsec) at 850 MHz, corresponding to ~180 parsec in an absorbing galaxy at z=0.7.

Presented at June 2016 ASKAP meeting

