

The formation and evolution of the Brightest Cluster Galaxies

Dongyao Zhao

Alfonso Aragón-Salamanca Christopher Conselice

School of Physics & Astronomy University of Nottingham

Outline

Brightest cluster galaxies (BCGs) are the most massive and luminous galaxies in the universe

BCG morphology and structure

Zhao, Aragón-Salamanca, Conselice (2015a)

 Linking BCG morphology, structure, mass and environment

Zhao, Aragón-Salamanca, Conselice (2015b)

• BCG evolution since z~2

Zhao, Conselice, Aragón-Salamanca (2016)

Visual Classification

- 625 BCGs $0.02 \le z \le 0.1$ from von der Linden+07
- Morphologies:
 - cD: 57%
 - cD/E or E/cD: 21%
 - Elliptical: 13%
 - S0s: 3.5%
 - o Spirals: 3.8%
 - Mergers: 2%

SDSS DR7 r-band

Measurements of Structure

Quality of the fits

Quantify residual images

• residual flux fraction (RFF)

$$RFF = \frac{\sum_{i,j \in A} \overline{I_{i,j} - I_{i,j}^{\text{model}}} \rightarrow 0.8 \times \sum_{i,j \in A} \sigma_{i,j}^{\text{bkg}}}{\sum_{i,j \in A} \overline{I_{i,j}}}$$
residual flux
o reduced χ^2
 $\chi^2_{\nu} = \frac{1}{N_{\text{dof}}} \sum_{i,j \in A} \frac{\overline{I_{i,j} - I_{i,j}^{\text{model}}}^2}{\sigma_{i,j}^2}$

Good fit: RFF ~ 0.02 $\chi^2 \sim 1.1$

Single Sérsic profile fits

- **cD** and elliptical BCGs have similar *n*
 - cD galaxies have larger effective radii than ellipticals
- It is harder to fit cD galaxies well with a single Sérsic profile (larger *RFF* and χ^2)
- → Clear link between morphology and structure

Automatic Selection of cD Galaxies

- Best border
 - Method from Hoyos+12
 - Selected cDs have high completeness (75%) and low contamination (20%)
 - This method can be applied to future BCG samples

Morphology, Structure, Stellar Mass and Environment

Stellar Mass

*M*_{*} does not correlate with Sérsic index *n M*_{*} correlates with effective radius *R*_e

Stellar masses from 'The MPA-JHU DR7 release of spectrum measurements'

Morphology, Structure, Stellar Mass and Environment Environmental Density

Density from Tempel+12 for scale of 1 $h^{-1}Mpc$

0

0

Morphology, Structure, Stellar Mass and Environment

BCG morphology is linked with *M*_{*} and environment

o cDs tend to be more massive than elliptical BCGs

- cDs reside in denser regions than elliptical BCGs
- o cDs are hosted by more massive DM haloes than ellipticals

Morphology, Structure, Stellar Mass and Environment

BCG morphology is linked with *M*_{*} and environment

- cDs are larger by a factor of 2 and 60% more massive than elliptical BCGs at the same density
- **cDs** probable grow from elliptical BCGs through dry (minor) mergers while developing their outer envelope

The z ~ 2 progenitors of today's BCGs

To understand BCG evolution since $z \sim 2$ we need to:

- Select sample of BCG progenitor candidates at $z \sim 2$
- Select matching sample of their descendants at $z \sim 0$
- Compare the structure, morphology, stellar mass, and SFR/sSFR of BCG progenitors and their descendants

→ Implications for BCG evolution

The z ~ 2 progenitors of today's BCGs

BCG number density ~ $10^{-4} h^3 Mpc^{-3}$

- z ~ 1-3: CANDELS UDS + density catalogue (Lani+13)
 - > 38 BCG progenitor candidates selected as the most massive galaxies in the densest regions

z ~ 0 SDSS BCGs (von der Linden+07)
 > 470 local descendants

The z ~ 2 progenitors of today's BCGs

Simulations

Millennium Simulation + SAM (De Lucia+07)

Constant number density of $10^{-4} h^3 Mpc^{-3}$: 8490 galaxies

• Z~0 BCGs:

- Select most massive galaxies in most massive DM haloes
- > Trace true BCG progenitors at $z \sim 2$

• Z~2 BCG progenitor candidates:

- Select most massive galaxies in densest regions
- Evolve forward to z~0 and check
 how many become BCGs

 $R_{aper} = 400 \ h^{-1} \text{kpc}$ $D = 120 \ h^{-1} \text{Mpc}$

The z ~ 2 progenitors of today's BCGs BCG evolution since z~2

progenitor= 2.32

local mix= 4.45

- Stellar mass has grown by a factor of ~2.5
- Size has grown by a factor of ~3.2
- BCGs evolve from disturbed disk-like galaxies to smooth ellipticals and cDs

The z ~ 2 progenitors of today's BCGs BCG evolution since z~2

- SFR is ~70x and sSFR is ~170x larger at z~2 than z~0
- At z ~ 1-2 Star formation contributes ~12% and merging ~9% of the final stellar mass
- At z < 1 there is little contribution from star formation and (minor) mergers dominate mass growth

Conclusions

- Properties of *z*~0 BCGs:
 - Most local BCGs are cDs or cD/E+E/cD (57%+21%). Only 13% are Es
 - cDs are larger and more massive than elliptical BCGs
 - cDs are harder to fit with single Sérsic profile than elliptical BCGs

 \rightarrow Automatic selection of cDs

- Size correlates with stellar mass; stellar mass correlates with density
- cDs tend to live in denser environments than elliptical BCGs

• BCG evolution:

- Since $z \sim 2$, BCGs have grown by $\sim x2.5$ in M_* and $\sim x3.2$ in R_e
- The BCG progenitors are more disk-like and more disturbed than local BCGs
- Merger and star formation contribute similarly to BCG mass growth at high redshift ($z\sim1-2$). At lower redshift (z<1), (minor) mergers dominate
 - CDs evolve from elliptical BCGs, growing the outer envelope through dry minor mergers.

This process is ongoing but almost finished (most BCGs are cDs)