

The mechanisms responsible for quenching star formation (the view from the L-Galaxies, Henriques15 model)

Bruno Henriques Zwicky Prize Fellow

<u>Galaxy Formation in the PLANCK cosmology I:</u>

matching the observed evolution of star-formation rates, colours and stellar masses;

Bruno Henriques, Simon White, Peter Thomas, Raul Angulo, Qi Guo, Gerard Lemson, Volker Springel, Roderik Overzier; MNRAS; 2015 Millennium, Volume = $500 \text{ h}^{-1}\text{Mpc}^{3}$ MillenniumII, Volume = $100 \text{ h}^{-1}\text{Mpc}^{3}$

Model results

longer reincorporation time-scales for gas ejected by SN in low mass galaxies: lower number density at early times, stronger build up at later times Henriques et al. 2013 in agreement with Oppenheimer & Dave 2008

$$t_{
m reinc} = -\gamma^\prime rac{10^{10}~{
m M}_\odot}{M_{
m vir}},$$

Henriques et al. 2015 changes to satellite properties

Model results

Quenching of Star Formation

Baldry et al. 2006

Massive galaxies and galaxies in denser environments tend to be quenched

Peng et al. 2010

AGN feedback

completely shuts down the cooling in massive galaxies (those with large enough black holes) leading to a quick cessation of star formation

Black Hole Growth

Black Hole Growth During Mergers – Quasar (f_{BH})

BH growth during galaxy mergers both by merging with each other and by accretion of cold disk gas

 $\Delta m_{\rm BH,Q} = \frac{f_{\rm BH}(m_{\rm sat}/m_{\rm central}) m_{\rm cold}}{1 + (V_{\rm BH} {\rm km \, s^{-1}}/V_{\rm vir})^2}.$

Kauffmann & Haehnelt 2000

Black Hole Feedback

Hot gas accreted by the BH, once a static hot halo has formed around the host galaxy

$$\dot{m}_{\rm BH,R} = k_{\rm AGN} \left(\frac{m_{\rm BH}}{10^8 \text{ M}_{\odot}} \right) \left(\frac{f_{\rm hot}}{0.1} \right) \left(\frac{V_{\rm vir}}{200 \,\rm km \, s^{-1}} \right)^3,$$
(A11) Croton et al. 2006

Henriques et al 2015

HST+Chandra

 $\dot{M}_{\rm BH} = k_{\rm AGN} \left(\frac{M_{\rm hot}}{10^{11}/{\rm h\,M_\odot}} \right) \left(\frac{M_{\rm BH}}{10^8/{\rm h\,M_\odot}} \right).$

Environment

Environment removes the fuel for star formation in satellite galaxies. It is the predominant quenching mechanism in satellite galaxies

AGN Quenching

Henriques et al. 2015

AGN Quenching

passive fraction vs stellar mass at fixed environment

data from Wetzel et al. 2012

AGN quenches massive galaxies at the expected rates, but 30% of very massive galaxies remain SF - BH growth only in mergers

Colour evolution of massive galaxies

1 - median evolution of massive galaxies with quenching at 0.5 < z < 3.0

- 2 extreme age "downsizing" with quenching at $z\sim 2$
- 3 extreme mass-assembly "downsizing" $(10^{11}M_{sun} \text{ at } z\sim 3)$
- 4 return to the star-forming sequence

Environment Quenching

passive fraction vs environment at fixed stellar mass

environmental effects quench satellites at the observed rates, except in the densest regions

Environment Quenching

too many quenched galaxies in the inner regions of groups and clusters $(0.1R_{vir})$, less than 10% of the galaxies

despite no ram-pressure striping in clusters the remaining environmental effects are still too strong. Do we need interaction induced star formation events?

Environment Quenching

9.0

=0.10

10.0 11.0 log10(M.[h-2Mo])

9.0 10.0 11.0

 $\log_{10}(M_{\bullet}[h^{-2}M_{\odot}])$

z = 1.00

9.0

z=2.00

9.0

10.0 11.0

 $\log_{10}(M[h^{-2}M_{\odot}])$

z=3.00

10.0 11.0

log₁₀(M.[h⁻²M_o])

z = 0.40

9.0 10.0 11.0

log₁₀(M,[h⁻²M_o])