Observational signatures of kinematic transformations

Michele Cappellari

See Cappellari (2016, ARA&A, 54, 597)

What do we expect?

Two main channels (Cappellari-11 Nature)

 a) Build up by gas accretion (+ quenching)
 b) Build up by dry mergers

 What are their relative contributions?

Relics of dry-merging channel

Graham+03

Kormendy+09

Emsellem+04

Core scouring by SMBH (e.g. Faber+97; Milosavljevic+01)

- Multiple minor merging (Hilz+13, Naab+14)
- Disk destruction or lack of formation

Relics of gas-accretion channel

Light Excess

Kormendy+09

Fast rotators

Emsellem+04

- Central light excess (Mihos-Hernquist94)
- Gas dissipation: disk growth or preservation
- Fast rotation like spiral galaxies (Emsellem+07; Cappellari+07)
- Axisymmetric shapes

Nuclear profiles and luminosity

(Faber+97)

(Also e.g. Graham-Guzman03, Ferrarese+06, Kormendy+09) • Core/deficit dominate for $M_V < -22$ • Core-cusp overlap $-22 < M_V < -20.5$

Recognizing relics in large surveys

Core/deficit measurement requires HST/JWST

- Bulge/disk decomp. depends on inclination
- Isophotal shape depends on inclination
- Sersic n is a weaker indicator
- Stellar kinematics solves these problems

Bryant+15

Bundy+15

Recognizing face on disks

Disky Elliptical

S0 (Cappellari-16 ARA&A)

Kinematics identifies nearly face-on disks

• Only $\lesssim 2\%$ of disk can be missed (Jesseit+09)

Fast rotators/spirals are axisymmetric

(Krajnovic+11 & Fogarty+15)

(Barrera-Ballesteros+14)

- 90% of all fast rotators aligned within ≈ 5°
- Better aligned than spiral galaxies
- Only exceptions are bars and interactions
- Axisymmetric out to the stellar halo $\sim 3R_e$

Fast kinematics very homogeneous

Kinematics encoded by <u>one</u> number β_z = 1 - σ_z²/σ_R²
 Differences entirely due to bulge/disk fraction

Fast/slow: rotation dichotomy

Fast rotators have oblate velocity ellipsoid

- Observed scatter of 7% including models errors!
- Consistent distribution for both E and SO galaxies
- Slow rotators follow different distribution

Stellar angular momentum

• Fast rotator \rightarrow inclined disk galaxies

Consistent with anisotropy trend from dynamics

• Slow rotator \rightarrow weakly triaxial c/a > 0.6

E class is poor proxy for kinematics

Expected trend angular momentum vs. morphology

Explained by variation in bulge fraction (e.g. Cortese+16)

• 2/3 of classic ellipticals from RC3 are fast rotators!

Beware of counter-rotating disks!

CREDIT: Bill Saxton NRAO/AUI/NSF

JAM dynamical models (Cappellari-16 ARA&A)

- Velocity reversal along major axis
- Double peak of velocity dispersion (2σ: Krajnovic+11)
- Low projected angular momentum
- But belong to the class of ETGs with disks

Counter-rotating disks on (λ_R, ϵ)

Cappellari-16 ARA&A Data from: Emsellem+11

Fogarty+15

• Overlap with slow rotators on (λ_R, ϵ)

But physically distinct and different mass distribution

'Blind' classification can affect conclusions

Two channels of galaxy evolution

Kinematic classification from IFS (Cappellari-13 ApJL)

Spirals -> Fast rotators

- Slow mass increase
- Environment quenching
- Bulge quenching

Core slow rotators \rightarrow

- Mass growth $M \propto R_e$
- Halo quenching
- Dominate above $M_{\rm crit} \approx 2 \times 10^{11} M_{\odot}$

Properties driven by bulge fraction

- Bulge Fraction
- Density Slope

• Below stellar mass $M_{
m crit} \lesssim 2 imes 1011$

- Stellar population
- Molecular gas frac.
- Follow <u>total mass</u> slope
- Parallel to σ
- Traces bulge mass fraction

Cappellari-16 ARA&A (data from Cappellari+13b & McDermid+15)

Summary of galaxy evolution

Two channels of galaxy formation

 Also explains observed black hole scaling relations (e.g. Kormendy-Ho 13, Grahm-Scott13, van den Bosch-16)
 But galaxies do not follow both in sequence!