Direct detection and astrophysics

Céline Boehm

IPPP, Durham

LAPTH, Annecy

Caastro, Jan 2017

The need for non-baryonic matter

 $\dot{\theta}_{\gamma} \;=\; k^2 \psi + k^2 \left(rac{1}{4} \delta_{\gamma} - \sigma_{\gamma}
ight) - \dot{\kappa} (\theta_{\gamma} - \theta_b) \;,$ $\dot{\theta}_{\rm DM} = k^2 \psi - \mathcal{H} \theta_{\rm DM}$, The CMB cannot be explained

with baryonic DM only

A consequence of Silk damping (Nature, 1966)

The DM particle hypothesis

Mond/Bekenstein Bekenstein astro-ph/0403694

C. Skordis, D. Mota, P. Ferreira, C.Boehm : astro-ph/0505519

Impossible to explain Planck 2015! This is called the Silk damping (1967)

A DM-like fluid is needed!

The need for a collisionless fluid

0709.0524VI

Primordial Black Holes ???

arXiv:1603.00464 arXiv:1501.07565 arXiv:1607.06077

Ways to evade CMB limits

arXiv:1612.05644

> 100 Msol ruled out as main DM component

But we still need some sort of dark matter (at least ~ a collisionless fluid)

WIMPs are still the simplest explanation

How do we test the particle hypothesis?

The DM halo

DISTRIBUTION OF DARK MATTER IN NGC 3198

$$v_c^2 = \frac{G M(r)}{r}$$

$$M(r) = \int 4\pi^2 \rho(r) \, dr$$

 $M(r) = M_dm + M_baryons$

DM is a subcomponent Its density is the highest

great for Indirect Detection

Exemple for any event it is 3.0 Miller have

DM is dominant.
 Its density is low
 great for direct Detection

Potential issues

Indirect Detection

$$\phi \propto \int dl \ \rho(r)^{1,2}$$

Courtesy: T. Lacroix

$$\rho_{\rm NFW_{gen}}(r) = \rho_0 \left(\frac{r}{r_0}\right)^{-\gamma} \left[1 + \left(\frac{r}{r_0}\right)^{\alpha}\right]^{-\frac{\beta-\gamma}{\alpha}}$$

Direct Detection

Figure 2. Velocity distribution functions: the left panels are in the host halo's restframe, the right panels in the restframe of the Earth on June 2^{ad}, the peak of the Earth's velocity relative to Galactic DM halo. The solid red line is the distribution for all particles in a 1 kpc wide shell centered at 8.5 kpc, the light and dark green shaded regions denote the 68% scatter around the median and the minimum and maximum values over the 100 sample spheres, and the dotted line represents the best-fitting Maxwell-Botzmann distribution.

see A. Peter's talk

DM accretion near Black Holes

Condition of formation of spikes:

- * BHs at the center of galaxies can grow adiabatically
- * Adiabatic growth inside a population of stars enhances the density of stars

Why not enhancement of DM density?

Ipser & Sikivie (1987): isothermal ->r^-3/2, Gondolo & Silk (1999) : NFW -> 7/3

Electromagnetic emission from cosmic rays from DM

Cluster of galaxies Milky Way Dwarf galaxies AGNs (Cen A, ESO)

cosmic rays	gamma rays	radio/submm
decay	DM —-> SM SI	M (SM)
annihilations	DM DM —> SM	I SM

Indirect detection signatures

Injection of cosmic rays at high energy (> keV!)

If mdm >> MeV Prompt emission (gamma-ray)

$$\frac{d\phi}{dE} = \frac{1}{8 \pi} \left(\frac{\sigma v}{m_{\chi}^2} \right) \sum_{i} \frac{\mathrm{BR}_i}{\mathrm{dE}} \frac{\mathrm{dN}_i}{\mathrm{dE}} \xi^2 \int \mathrm{dl} \ \rho_{\chi}^2(\mathbf{l}) \qquad \Rightarrow \Phi_{\mathrm{prompt}} \propto \frac{\sigma v}{\mathrm{m_{DM}}^2} \int \ dl \ \rho^2(l)$$

Inverse Compton (gamma-ray) Synchrotron (radio/submm)

Spatial diffusion
 Energy losses

"propagation" of cosmic rays gives rise to typical energy spectra

Submm constraints our Milky Way

arXiv:1105.4689

40 GeV DM

800 GeV DM

Expected signature in LFI

No signal!

Radio constraints our Milky Way

Excludes up to 10 GeV particles for normal B field values

Gamma-rays in dSphs

Thermal DM already partially excluded!

- 3 order of magnitude to catch up DD limits though the process aren't the same!

I'll comment again on this!

Antiprotons

Constraints on neutralino annihilating into W+W-

arXiv:1208.5009

Gamma-rays dSphs + MW + CMB

$$\sigma_{\mathrm{DM}-\gamma} \lesssim 10^{-33} \left(\frac{m_{\mathrm{DM}}}{\mathrm{GeV}}\right) \mathrm{cm}^2$$

same with neutrinos

Indirect detection limits have strong impact on mDM < 10 GeV

DM can be lighter than a few GeV! But ...

Indirect detection limits have strong impact on mDM < 10 GeV

The cross section can be independent of the DM mass!

non chiral couplings

$$\sigma v \propto \frac{1}{m_F^4} \left(\left(C_l^2 + C_r^2 \right) \ m_f + 2C_l \ C_r \ m_F \right)^2$$

CB, P. Fayet, hep-ph/0305261 Feng& Kumar (0803.4196)

The mediator can be very light!

In the early Universe (c=1), light DM means light Z' for thermal RD and adjust couplings In late Universe, light DM is - fine because the cross section is velocity dependent

Signature of light DM (t-channel mediators) at LHC

But Light DM particles are being ruled out

BDX arXiv:1406.3028, Dafne/Kloe, arXiv:1606.08849&: arXiv:1604.08206 arXiv:1412.8378 arXiv:1407.0993

The GeV excess (still room for relatively light DM)

10-30 GeV DM annihilating mostly into b-quarks or muons

Hooper&Goodenough 2009 FERMI-LAT 2009 arXiv:1306.5725

Probably astrophysical sources but ...

Leptons work too...

T. Lacroix, CB, J. Silk, 2014

Direct detection experiments can be compared to ID and LHc searches!

Simplified models

hep-ph/0305261

	Scalar	Fermion	Vector
DM	φ	x	X^{μ}
Mediator	A	ψ	V^{μ}
SM (fermions)	-	f	-

Notice the ~!!!

Model Number	DM	Madlatan	Teste	Elastic	Near Future Reach?		
	DM	Mediator	Intera	Scattering	Direct	LHC	
1 Dirac Fermion		Spin-0	$\bar{\chi}\gamma^5\chi,\bar{f}f$	$\sigma_{\rm SI} \sim (q/2m_\chi)^2 \; ({\rm scalar})$	No	Maybe	
1	Majorana Fermion	Spin-0	$\bar{\chi}\gamma^5\chi, \bar{f}f$	$\sigma_{\rm SI} \sim (q/2m_\chi)^2 \; ({\rm scalar})$	No	Maybe	
2	Dirac Fermion	Spin-0	$\bar{\chi}\gamma^5\chi,\bar{f}\gamma^5f$	$\sigma_{ m SD} \sim (q^2/4m_n m_\chi)^2$	Never	Maybe	
2	Majorana Fermion	Spin-0	$\bar{\chi}\gamma^5\chi,\bar{f}\gamma^5f$	$\sigma_{ m SD} \sim (q^2/4m_n m_\chi)^2$	Never	Maybe	
3	Dirac Fermion	Spin-1	$\bar{\chi}\gamma^{\mu}\chi, \bar{b}\gamma_{\mu}b$	$\sigma_{\rm SI} \sim \rm loop (vector)$	Yes	Maybe	
4	Dirac Fermion	Spin-1	$ar{\chi}\gamma^{\mu}\chi,ar{f}\gamma_{\mu}\gamma^5 f$	$ar{f} \gamma_{\mu} \gamma^5 f = egin{array}{c} \sigma_{ m SD} \sim (q/2m_n)^2 \ { m or} \ \sigma_{ m SD} \sim (q/2m_\chi)^2 \end{array}$		Maybe	
5	Dirac Fermion	Spin-1	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi, \bar{f}\gamma_{\mu}\gamma^{5}f$	$\sigma_{\rm SD} \sim 1$	Yes	Maybe	
5	Majorana Fermion	Spin-1	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi, \bar{f}\gamma_{\mu}\gamma^{5}f$	$\sigma_{\rm SD} \sim 1$	Yes	Maybe	
6	Complex Scalar	Spin-0	$\phi^{\dagger}\phi,ar{f}\gamma^{5}f$	$\sigma_{ m SD} \sim (q/2m_n)^2$	No	Maybe	
6	Real Scalar	Spin-0	$\phi^2, \bar{f}\gamma^5 f$	$\sigma_{ m SD} \sim (q/2m_n)^2$	No	Maybe	
6	Complex Vector	Spin-0	$B^{\dagger}_{\mu}B^{\mu},ar{f}\gamma^5 f$	$\sigma_{ m SD} \sim (q/2m_n)^2$	No	Maybe	
6	Real Vector	Spin-0	$B_{\mu}B^{\mu},ar{f}\gamma^{5}f$	$\sigma_{ m SD} \sim (q/2m_n)^2$	No	Maybe	
7	Dirac Fermion	Spin-0 (t-ch.)	$ar{\chi}(1\pm\gamma^5)b$	$\sigma_{\rm SI} \sim \rm loop~(vector)$	Yes	Yes	
7	Dirac Fermion	Spin-1 (t-ch.)	$ar{\chi}\gamma^{\mu}(1\pm\gamma^5)b$	$\sigma_{\rm SI} \sim \rm loop~(vector)$	Yes	Yes	
8	Complex Vector	Spin-1/2 (t-ch.)	$X^{\dagger}_{\mu}\gamma^{\mu}(1\pm\gamma^5)b$	$\sigma_{\rm SI} \sim \rm loop~(vector)$	Yes	Yes	
8	Real Vector	Spin-1/2 (t-ch.)	$X_{\mu}\gamma^{\mu}(1\pm\gamma^5)b$	$\sigma_{\rm SI} \sim \rm loop \ (vector)$	Yes	Yes	

arXiv:1404.0022

New types of DM-nuclei interactions

new models, new operators, new couplings to nuclei!

	$\overset{\mathrm{SI}}{\mathcal{O}_1^{NR}}$	$\mathop{\mathrm{SD}}\limits_{\mathcal{O}_4^{NR}}$	${\mathop{\rm SD}\limits_{{\cal O}_6^{NR}}}$	$\mathop{\mathrm{SD}}\limits_{\mathcal{O}_7^{NR}}$	$\overset{ ext{SI}}{\mathcal{O}_8^{NR}}$	$\mathop{\mathrm{SD}}\limits_{\mathcal{O}_9^{NR}}$	$\mathop{\mathrm{SD}}\limits_{\mathcal{O}_{10}^{NR}}$	$\underset{\mathcal{O}_{11}^{NR}}{\mathrm{SI}}$	$\mathop{\mathrm{SD}}\limits_{\mathcal{O}^{NR}_{13}}$	$\mathop{\mathrm{SD}}\limits_{\mathcal{O}_{14}^{NR}}$
1/2-S	$g_{f,s}g_{\chi,s}$		$g_{f,p}g_{\chi,p}$				$g_{f,p}g_{\chi,s}$	$g_{f,s}g_{\chi,p}$		$g_{f,s}g_{\chi,p}$
$1/2^{+}-V$	$g_{f,v}g_{\chi,v}$	$g_{f,a}g_{\chi,a}$		$g_{f,a}g_{\chi,v}$	$g_{f,v}g_{\chi,a}$	$g_{f,a}g_{\chi,v}$				
1/2-V		$g_{f,a}g_{\chi,a}$			$g_{f,v}g_{\chi,a}$					
$1/2-S^{\perp}$	$ g_{s}^{2} - g_{p}^{2} $	$ g_{s}^{2} + g_{p}^{2} $								
$1/2^{*}-S^{\perp}$	$ g_{s}^{2} \pm g_{p}^{2} $	$ g_{s}^{2} + g_{p}^{2} $								
$1/2-V^{\pm}$	$ g_v^2 - g_a^2 $	$ g_v^2 + g_a^2 $								
$1/2^{*}-V^{\pm}$	$ q_v^2 \pm q_c^2 $	$ q_{v}^{2} + q_{c}^{2} $								
0-S	$g_\chi g_{f,s}$						$g_\chi g_{f,p}$			
0-V	$y\chi yJ,v$			$y\chi y_J, a$			$y\chi y_J, a$			
$0-\mathrm{F}^{\pm}$	$ g_s ^2 \pm g_p ^2$						$g_p g_s^\dagger - g_s g_p^\dagger$			
$0-F^{\pm}$	$ g_s ^2 \pm g_p ^2$						$g_p g_s^\dagger \pm g_s g_p^\dagger$			
1-S	$g_\chi g_{f,s}$						$g_\chi g_{f,p}$			
1-V (\mathcal{V}_1)		$Im(g_{\chi})g_{v}$	$\mathrm{Im}(\mathrm{g}_{\chi})\mathrm{g}_{\mathrm{v}}$		${ m Im}({ m g}_\chi){ m g}_{ m a}$			${ m Re}({ m g}_{\chi}){ m g}_{ m a}$	$\operatorname{Re}(g_{\chi})g_{v}$	
1-V (\mathcal{V}_2)	$\rm{Im}(g_{\chi})g_{v}$			$Im(g_{\chi})g_{a}$			${ m Re}({ m g}_\chi){ m g}_{ m a}$			
1-V (\mathcal{V}_3)		${ m Re}({ m g}_{\chi}){ m g}_{ m a}$	${ m Re}({ m g}_{\chi}){ m g}_{ m a}$		${ m Re}({ m g}_{\chi}){ m g}_{ m v}$	${ m Re}({ m g}_{\chi}){ m g}_{ m v}$		$\rm{Im}(g_{\chi})g_{v}$		$\rm{Im}(g_{\chi})g_{a}$
$1-F^{\pm}$	$ g_s ^2 \pm g_p ^2$				$g_v g_a^\dagger + g_a g_v^\dagger$	$g_v g_a^\dagger + g_a g_v^\dagger$	$g_v g_a^\dagger - g_a g_v^\dagger$			
1^* -F [±]	$ g_s ^2 \pm g_p ^2$					$g_v g_a^\dagger + g_a g_v^\dagger$	$g_v g_a^\dagger - g_a g_v^\dagger$	$g_v g_a^\dagger + g_a g_v^\dagger$		

main operators

new operators

most of them suppressed by spin and/or velocity but ..

Competition between DD and LHC (monojets)

EFT not valid at low mass so simplified models!

no resonance

Stringent limits from Direct and Indirect detection

Still room for new physics but constrained!

We need to pay attention to the cosmology

as this can affect all our estimates!