

Part of this project has been funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 657751

CAASTRO-CoEPP Joint Workshop University of Melbourne, Australia

TPC GEMs R&D for directional DM search

Elisabetta Baracchini

Istituto Nazionale di Fisica Nucleare INFN, Laboratori Nazionali di Frascati, Italy

In collaboration with C. Antochi, G. Cavoto, E. Di Marco, G. Mazzitelli, F. Murtas, D. Pinci, F. Renga, A. Tomassini, C. Voena

May 2015- May 2017

Friple thin GEM amplification (3 x 3 cm^2) + pixel charge/time readout

DCANT INFN CSN5

2014-2016

Section and the section of the secti

CYGNUS-RD INFN CSN5

2017-2018

Triple thin GEM amplification (10 x 10 cm²) + CMOS optical readout

Thin GEM Amplification

- Particle conversion, charge amplification and signal induction zones are physically separated
- Large dynamic range: from 1 to 10⁸ particle/cm² /s
- Gain up to > 10⁴
 Gain up to > 10⁴
- High stability/granularity

- Micro pattern gas detector
- Thin holes are etched in a metallised kapton foil and a potential is placed across it
- Very large electric field around the holes (40 kV/cm) which creates a localised electron avalanche

NITEC

a Negative Ion Time Expansion Chamber for directional Dark Matter searches

NITEC detector

Carbon Nanotubes (see later)

<u>New field cage</u>: rings support structure (in black in the picture) manufactured with 3D printer

GEMPix

Developed by LNF in collaboration with CERN

Quad Timepix ASIC

Quad Timepix ASIC board with naked devices (i.e. no silicon)

side view pixel size 55 x 55 um Quad Timepix (512 x 512 pixels) = 4 Timepix chips 2.8 x 2.8 cm²

TimePix

TimePix is a pixelated silicon detector developed by MediPix2 collaboration We use a 2x2 array for a total of 512x512 pixel of 55 um side WITHOUT silicon sensors Processing electronics, including preamplifiers, discriminator threshold and pseudo-random counter fit inside the footprint of the overlying semiconductor pixel.

Can be operated in counting TOA, TOA and TOT mode but also TOA/TOT MIXED mode

Timepix clock can run from <1 MHz up to 100 MHz Timepix counter depth is 11810, **SUITED FOR BOTH ELECTRONS and NEGATIVE IONS DRIFT**

NITEC activities 2015-2016

A NITEC event

NFN

Measurement @ Beam Test Facility

Time measurements (TOA)

Ar:CO₂:SF₆ 192:85:93 Torr

GEM gain 1480 V

Pure SF₆ at 75 Torr, 100 Torr, 150 Torr GEM gain 1140 V 1240 V 1440 V

He:CF₄:SF₆ 60:40:120 Torr, 360:240:10 Torr
GEM gain 1460 V 1640 V

We measured the Time Of Arrival for 5 different drift distances @ 250, 530, 640, 750 and 860 V/cm for each configuration

(less points in Apr 2016 data)

E. Baracchini - TPC GEMs R&D for directional Dark Matter searches - CAASTRO-CoEPP Joint Workshop 2017, Melbourne

Apr 2016

Dec 2016

SF₆ @ 150 Torr

Dec 2016

Global quantities analysis shown in this talk. On going work on single track analysis.

SF₆ @ 100 Torr TOA analysis

750 V/cm

He:CF₄:SF₆ 360:240:10 Torr TOA analysis

860 V/cm

E. Baracchini - TPC GEMs R&D for directional Dark Matter searches - CAASTRO-CoEPP Joint Workshop 2017, Melbourne

2500 3000

3500 4000 4500 5000

(9200 -volume)*0.5

3000

4000 (9200.-volume)*0.5

780.4

266.7

288.5

Drift Velocity Measurements

Mobility Measurements 2007

NITEC gain (TOT) measurements in pure SF₆

E. Baracchini - NITEC: a Negative Ion Time Expansion Chamber for very rare events searches - IDM 2016, Sheffield

NITEC gain measurement in pure SF

E. Baracchini - NITEC: a Negative Ion Time Expansion Chamber for very rare events searches - IDM 2016, Sheffield

DCANT Carbon Nanotube for for Dark Matter directional searches

DCANT Concept

~ 8 deg for 6C at 10 KeV

Need to be tested:

Use electron beam at LNF BTF to "extract" carbon ions from CNT

- One carbon ion elastically scattered by a 500 MeV electron
- PRO: trigger on scattered electron at well defined angle: beam clearly visible
 CON: electron beam can induce a sizeable background into TPC
 Output of the provided of t

Could allow an integrated gas + solid DM target experiment <u>WITH DIRECTIONAL SENSITIVITY</u>

C 76 (2016) no.6, 349

- About 10¹⁶ 1nm diameter SWCNT can fit on a 10x10 cm² substrate
- Surface density of a graphene layer: 1/1315 g/m²
- About 2 g CNT on 100cm²

CNT ropes?

NITEC tests with carbon nanotube

Carbon Nanotubes

Beam on the side of nanotubes at various heights to study modification of the drift field

NITEC tests with carbon nanotube

NITEC with carbon nanotubes

We observe a consistent modification of the drift field due to the introduction of nanotubes structure AND support

- Support, kapton scotch and nanotube get polarized
- ANSYS simulation confirms observed results
- Substrate On going work to develop suitable support and

CYGNUS-RD Optical readout for a Negative Ion Time Projection Chamber

CYGNUS-RD Detector

CYGNUS-RD events (with electron drift)

80 MeV electron bent in magnetic field

CYGNUS-RD potentialities

~ 1000 photons/track mm, ~70 um track residuals, duster structures visible

2) Ionization density (can be used to extrapolate track direction/sense)

Light vs Distance Study

How far can we go and still see light? i.e. how large area can we cover with one CMOS camera?

50 cm

Light vs Lens Aperture

Both light vs lens aperture and light vs distance indicate isotropic light production

Example of cosmic track @ 60 cm

CYGNUS-RD @ BTF

Conclusions & Outlooks

Service NITEC

- Innovative SF₆ based negative ion gas mixtures tested and operated nearly atmospheric pressure (610 Torr) with triple thin GEMs at electron beam line
- Perform gain study with ⁵⁵Fe with the tested mixtures and explore new ones with higher He content (i.e. lower density)
- Perform neutron run at the ENEA facility (under discussion)

DCANT

- Support and nanotubes observed to modify drift field
- Solution Study to develop suitable support and substrate

CYGNUS-RD

- Verified isotropic emission of photons by the GEMs, implying that collected light follows optical rules (one over distance squared)
- Cosmic tracks easy identified at 60 cm distance (i.e. 30 x 30 cm² area covered)
- New beam test beginning Feb with attempt of atmospheric negative ion operation following gas mixtures tested by NITEC
- Fest of PMT inside TPC volume to measure times (minority carriers)

Backup

E. Baracchini - TPC GEMs R&D for directional Dark Matter searches - CAASTRO-CoEPP Joint Workshop 2017, Melbourne

34

Carbon Nanotubes

אזאו וא**ד**אי

GEMPix + NITPC: A Time Expansion Chamber

- At moderately high reduced fields, <u>anions drift at about 100 m/s, compared to about 104</u> <u>m/s for electron</u> in typical atmospheric pressure drift chamber conditions
- Excellent GEMPix time, energy and spatial resolutions
- Slow anions speed + typical separation of primary ionization clusters in gas + GEMPix performances = Time Expansion Chamber
 - Single ionization clusters drift slowly and could be individually observed with high precision: a relative time expansion between ionization process and signal readout has effectively been achieved
- Single ionization cluster observation can provide excellent dE/dx information, improved position resolution and possibility of superior energy resolution for low energy radiation

"The Time Expansion Chamber and single ionization measurement" (A.H.Walenta, IEEE TNS 26 73) "Suppressing drift chamber diffusion without magnetic field" (C.J.Martoff et al, NIM A 440)