TeV Gamma-Rays and Indirect Dark Matter Searches

Gavin Rowell

High Energy Astrophysics Group, School of Physical Sciences University of Adelaide

CAASTRO-CoEPP Meeting (Melb.) Jan/Feb 2017

Image Credit: NRAO

Gamma-rays (~30 GeV to ~500TeV)

Highly effective tracer of high energy particles High impact results ~ 20 Nature, Science, PhysRevLett papers since 2004

Great success with HESS, VERITAS, MAGIC, MILAGRO \rightarrow HESS-II, MAGIC-II, VERITAS upgrade, CTA, HAWC...

Gamma-Ray Annihilation Signatures from (WIMP) Dark Matter

Gamma-Ray Flux from Dark Matter Annihilation

Astrophysics term:

- assume density profile of DM ρ (NFW, Einasto..)
- peaking at cores of galaxies, clusters, stars....
- \rightarrow constraints on $\langle \sigma v \rangle$

Prefer astrophysically weak or 'understood targets

- \rightarrow Dwarf galaxies \rightarrow Globular clusters?
- \rightarrow Galactic centre region?
- \rightarrow Galaxy clusters..

TeV emission from ms pulsars, XRBs? GeV-TeV emission.. SMBH, SNRs, pulsars

Conrad 2014

Conrad 2014

The Cherenkov Telescope Array : A TeV Gamma-Ray Observatory

The Cherenkov Telescope Array

- Next generation gamma-ray observatory
- Huge improvement in all aspects of performance
 - x10 better sensitivity, better FoV + angular resolution, wider energy coverage, collection area >few km², wider survey capabilities
- User facility / proposal-driven observatory
 - CTA Consortium time (Key Science Projects) to lead off
- An international project ~ €300M capital cost
 - Involves >90% of current TeV gamma-ray scientists + many others
- EU ESFRI ranked project

ESFRI

European Strategy Forum on Research Infrastructures

Large Size Telescope LST (23m)

CTA Consortium (CTAC) July 2016

CTA – Australia

<u>U. Adelaide</u> G. Rowell, B. Dawson, R. Clay, P. Veitch, D. Ottaway, M. White, V. Stamatescu, L. Bowman, A. Malouf, N. Wild

<u>UNSW</u> M. Burton, M. Ashley, C. Braiding, N. Maxted

<u>WSU</u> M. Filipovic, N. Tothill

<u>ANU</u> G. Bicknell, R. Crocker, I. Seitenzahl

<u>Monash</u> C. Balazs, D. Galloway

<u>U. Syd</u> A. Green

The University of New South Wales

THE UNIVERSITY OF ADELAIDE

AUSTRALIA

<u>Funding</u> ARC LIEF 2015 + 2017-21 (hardware/commissioning/labour)

NCRIS/AAL (travel, meetings, CTAO membership)

Australia contributes funding to the "GCT" SST

SST-2M ASTRI

SST-1M

Australia - LIEF 2015 + 2017-21 support for GCT hardware and commissioning.

Other prototypes..... MST (Berlin)

SST-2M ASTRI (Sicily)

SST-1M (Cracow)

SCT-MST (Arizona)

CTA sites selected 16 July 2015 Ground breaking Oct. 9, 2015

San Pedro Mártir, Mexico

La Palma, Canary Islands, Spain

Northern Hemisphere

Southern Hemisphere

Aar, Namibia

Chosen sites Backup sites

13 June 2016 - CTA HQ (Bologna) - CTA Data Management Centre (DESY Berlin)

CTA South : Paranal, Chile

Access agreement with ESO – anticipating early 2017 signoff

CTA Performance Energy coverage ~20 GeV to >200 TeV

Differential Sensitivity

A factor of 5-10 improvement in sensitivity in the domain of about 100 GeV to some 10 TeV.

Extension of the accessible energy range from well below 100 GeV to above 100 TeV.

Credits: The CTA Consortium

CTA Science Case - on arXiv soon

KEY SCIENCE PROJECTS

Special Issue Vol 43, Pg 1-356 (Mar 2013)

- Galactic Plane Survey
- Galactic Centre Survey
- Large Magellanic Cloud Survey
- Extragalactic Survey
- Transients
- Cosmic-Ray PeVatrons
- Star-Forming Systems
- Active Galactic Nuclei
- Clusters of Galaxies
- Dark Matter
- Non-Gamma-Ray Science

intensity interferometry fast optical transients – milli-magnitude occultations (Kuiper belt population..)

<u>Three Themes</u> 1. Cosmic Particle

Acceleration

2. Probing Extreme Environments

3. Physics Frontiers: Beyond Standard Model

Gamma Rays from multi-TeV particles

Protons: Gamma-rays and gas targets are generally spatially correlated (need to map atomic and molecular ISM \rightarrow mm radio astronomy)

Electrons: Gamma-ray (IC) + non-thermal X-ray, radio emission (synchrotron) highly coupled

CTA Galactic Plane TeV Surveys : Major Issue


```
Funk et al 2012
```

 CTA will provide Galactic Plane TeV Gamma-ray maps at ~arc-min scales (sub-arc-min possible – with high quality cuts)

- >3 sources per deg² $|b| < 0.2^{\circ}$ $|I| < 30^{\circ}$ (Dubus etal 2013)
- Diffuse TeV components visible? from CR 'sea' – maybe local CR accelerator enhancements – yes

Confusion guaranteed (same as for Fermi-LAT at GeV energies!)

- Mapping the ISM on arc-min scales over the plane will be essential Mopra (CO, CS), Nanten2 (CO), ASKAP (HI, OH), THz (CI, C+)

Gamma-ray spectra from local and escaped CRs

CTA 50h Observation - CRs escaping accelerators Acero etal 2013

SNR age 2000 yr Cloud mass10⁵ M d = 1 kpcD=10²⁸(E/10GeV)^{0.5} cm²/s PeV CRs escape first and arrive at the cloud first! Probe for CR PeVatrons But confusion guaranteed in Gal. Plane! Need wide ISM surveys

 \rightarrow Mopra, Nanten2, Nobeyma, ASKAP

→ Many spectral shapes possible !

CR diffusion – not necessarily Isotropic!

Malkov etal 2013 Nava & Gabici 2013

→ Nearby clouds will see different CR densities

 \rightarrow Need detailed maps of ISM gas + B-field direction

B-field Faraday RM Jansson & Fararr et al 2012

→ ASKAP POSSUM!

CR Diffusion Into Molecular Clouds e.g. Gabici etal 2007, Inoue etal 2012 **R** = distance CR travels into molecular cloud core 10 TeV proton 1 TeV proton R ~ sqrt[6 D(E, B) t] $D(E_P, B(r)) = \chi D_0 \left(\frac{E_P/\text{GeV}}{B/3\,\mu\text{G}}\right)^{0.5} \quad [\text{cm}^2\,\text{s}^{-1}],$ Crutcher 2010 $B \sim 10(n / 300 \text{ cm}^{-3})^{0.65} \mu\text{G}$ χ =diffusion suppression factor \rightarrow Low energy CRs can't reach cloud core. \rightarrow Harder TeV spectra from cores. → Depends on B-turbulence (e.g. Morlino & Gabici 2015) \rightarrow **Don't expect electrons to penetrate!!** mol. cloud core (due to sync. losses)

 \rightarrow Need to map dense cloud cores ~1 arcmin or better

Angular Resolution 68% PSF (HESS, CTA..) Acharyara etal 2013

130 GeV Dark Matter Line at Fermi-LAT Hotspot? (Weniger 2012) Unfortunately No.

H.E.S.S. Collab Rhys Rev. Lett 2016

CTA Dark Matter Line Gal.Cen. (r<1°) 500hr $\chi\chi \rightarrow \gamma\gamma$

CTA Consortium - Science Case (in prep)

CTA Dark Matter continuum Gal.Cen. (r<1°) 500hr $\chi\chi \rightarrow b\bar{b}$

CTA Consortium - Science Case (in prep)

Summary

- WIMP DM annihilation into broadband and line gamma-ray emission (GC region, dwarf spheroid gals., gal. clusters.)

- DM studies with current gamma-ray telescopes (Fermi-LAT, HESS..) now approaching thermal relic
 depends strongly on DM profile though!
- Next generation (e.g. CTA) to go further
- But lots of particle transport astrophysics (at Galactic Centre especially) to understand \rightarrow will influence DM searches there

Thank you..

@ G. Pérez, IAC (SMM)

TeV (10¹² eV) Gamma-Ray detection:

Stereoscopic Cherenkov Imaging

Huge effective area > 10^5 m^2

(cf. Fermi-LAT 0.1 – 20 GeV - 1m²)

Ang. Res. < 0.1°

Energy Res. ∆E/E < 0.15

Air shower

Cherenkov 'image' as viewed by each telescope

>500m

Cherenkov light

- Light pool

Detection by fast cameras in telescopes

CTA Galactic Science

CTA

• e.g. Galactic objects

- Newly born pulsars and the supernova remnants
 - have typical brightness such that HESS etc can see only relatively local (typically at a few kpc) objects

CTA will see whole Galaxy

 Survey speed ~300×HESS Current Galactic VHE sources (with distance estimates)

HESS

LETTER

doi:10.1038/nature17147

Acceleration of petaelectronvolt protons in the Galactic Centre

HESS Collaboration*

NI.

10-13

Diffuse emission (\times 10)

HESS J1745-290

Model (best fit): diffuse emission
 Model: Diffuse emission E^{68%}_{cut} = 2.9 PeV
 Model: Diffuse emission E^{90%}_{cut} = 0.6 PeV

•• Model: Diffuse emission $E_{\text{cutp}}^{95\% \text{ CL}} = 0.4 \text{ PeV}$

Energy (TeV)

10

- Hard spectrum from diffuse region 70pc
 Cutoff ~ PeV energies
- Continous CR injector over ~few1000yr
- \rightarrow Central BH most likely accelerator
- → Could explain galactic CRs >0.1 PeV if BH more active in past. (SNRs may still contribute some PeV CRs)