The Distribution of Dark Matter Velocities

Steen H. Hansen, Dark Cosmology Centre, Niels Bohr Institute,

Melbourne, 2017

3 steps to measure DM

The velocity-spatial distribution of the WIMPs in our galactic halo is not well known. So far the simplest, non-consistent and approximate isothermal sphere model has generally been considered in direct WIMP searches; under this assumption the WIMPs form a dissipationless gas trapped in the gravitational field of our Galaxy in an equilibrium steady state and have a quasi-maxwellian velocity distribution with a cut-off at the escape velocity from the galactic gravitational field. More realistic halo

Bernabei et al, astro-ph/0307403

The dark halo model widely used in the calculations carried out in the WIMP direct detection approaches is the simple isothermal sphere that corresponds to a spherical infinite system with a flat rotational curve. The halo density profile is:

$$\rho_{DM}(r) = \frac{v_0^2}{4\pi G} \frac{1}{r^2} \tag{30}$$

corresponding to the following potential:

$$\Psi_0(r) = -\frac{v_0^2}{2} \log{(r^2)}.$$
(31)

In this case, when a maximal halo density is considered, the WIMP velocity distribution is the Maxwell function:

$$f(v) = N \exp\left(-\frac{3v^2}{2v_{rms}^2}\right)$$
(32)

Bernabei et al, astro-ph/0307403

Class A: spherical ρ_{DM} , isotropic velocity dispersion			eq.
A0	Isothermal Sphere		(30)
A1	Evans' logarithmic [101]	$R_c = 5 \mathrm{kpc}$	(33)
A2	Evans' power-law [102]	$R_c = 16 ext{ kpc}, \ eta = 0.7$	(35)
A3	Evans' power-law [102]	$R_c=2~{ m kpc},~eta=-0.1$	(35)
A4	Jaffe [103]	$\alpha=1,\beta=4,\gamma=2,a=160\;{\rm kpc}$	(37)
A5	NFW [104]	$lpha=1,eta=3,\gamma=1,a=20~{ m kpc}$	(37)
A6	Moore et al. [105]	$\alpha=1.5,\beta=3,\gamma=1.5,a=28~{\rm kpc}$	(37)
A7	Kravtsov et al. [106]	$lpha=2,eta=3,\gamma=0.4,a=10~{ m kpc}$	(37)
Class B: spherical ρ_{DM} , non–isotropic velocity dispersion			
$\textbf{(Osipkov-Merrit, } \beta_0 = 0.4\textbf{)}$			
B1	Evans' logarithmic	$R_c = 5 \mathrm{kpc}$	(33)(39)
B2	Evans' power-law	$R_c = 16 \; \mathrm{kpc}, \beta = 0.7$	(35)(39)
B3	Evans' power-law	$R_c=2~{ m kpc},~eta=-0.1$	(35)(39)
B4	Jaffe	$lpha=1,eta=4,\gamma=2,a=160~{ m kpc}$	(37)(39)
B5	NFW	$lpha=1,eta=3,\gamma=1,a=20\;{ m kpc}$	(37)(39)
B6	Moore et al.	$lpha = 1.5, eta = 3, \gamma = 1.5, a = 28 \; { m kpc}$	(37)(39)
B7	Kravtsov et al.	$lpha=2,eta=3,\gamma=0.4,a=10~{ m kpc}$	(37)(39)
Class C: Axisymmetric ρ_{DM}			
C1	Evans' logarithmic	$R_c = 0, q = 1/\sqrt{2}$	(40)(41)
C2	Evans' logarithmic	$R_c = 5 \; \mathrm{kpc}, q = 1/\sqrt{2}$	(40)(41)
C3	Evans' power-law	$R_c = 16 \text{ kpc}, q = 0.95, \beta = 0.9$	(42)(43)
C4	Evans' power-law	$R_c = 2 \; { m kpc}, q = 1/\sqrt{2}, eta = -0.1$	(42)(43)
Class D: Triaxial $\rho_{\rm DM}$ [107] (q = 0.8, p = 0.9)			
D1	Earth on maj. axis, rad. anis.	$\delta = -1.78$	(45)(46)
D2	Earth on maj. axis, tang. anis.	$\delta=16$	(45)(46)
D3	Earth on interm. axis, rad. anis.	$\delta = -1.78$	(45)(46)
D4	Earth on interm. axis, tang. anis.	$\delta=16$	(45)(46)

Bernabei et al, astro-ph/0307403

Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX data

Nuclear-recoil energy spectra for the WIMP signal are derived from a standard Maxwellian velocity distribution with $v_0 = 220 \text{ km/s}$, $v_{\rm esc} = 544 \text{ km/s}$, $\rho_0 = 0.3 \text{ GeV/cm}^3$,

Improved Limits from the Large Underground Xenon Dark Matter Experiment

f(v) depends on halo model: typically Maxwellian truncated at galactic escape velocity (544 km/s) and account for Earth's motion through galaxy (220 km/s + annual modulation)

Local dark matter density also depends on halo model: ρ₀ ~ 0.3 GeV/cm³

What does the velocity distribution look like?

Kuhlen et al, arXiv:0912.2358

Lisanti et al, arXiv:1010.4300

Theoretical velocity anisotropy

The velocity distribution function is $exp(-v^2/T)$ for a normal gas, but what about **collisionless** dark matter?

At Earths distance, split in Radial and Tangential

The tangential distribution is quite easy to derive

- If you move along the tangent, then you move in constant density and constant potential
- That we can solve for!

Hansen et al, astro-ph/0407111

We (essentially) understand the tangential distribution function

Only the tail of the tangential distribution is wrong...

How to derive the radial distribution function?

Jeans equation from integral over the Boltzmann equation

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f - \nabla \Phi \cdot \frac{\partial f}{\partial \vec{v}} = 0$$
$$\int v_r \, \frac{df}{dt} \, d^3 v = 0$$
$$\frac{GM(r)}{r} = -\overline{v_r^2} \left(\frac{d\ln(\rho)}{d\ln(r)} + \frac{d\ln(\overline{v_r^2})}{d\ln(r)} + 2\beta \right)$$

How to derive the radial
distribution function?

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f - \nabla \Phi \cdot \frac{\partial f}{\partial \vec{v}} = 0$$

$$\int \frac{df}{dt} d^2 v_{\theta,\phi} = 0$$

$$v_r \frac{\partial F_R}{\partial r} + \frac{1}{r} \frac{\partial}{\partial v_r} \left(\langle v_{\theta}^2 \rangle_r + \langle v_{\phi}^2 \rangle_r \right) - \frac{d\Phi}{dr} \frac{\partial F_R}{\partial v_r} + 2 \frac{v_r F_R}{r} = 0$$

Eilersen et al, arXiv:1701.04908

We (essentially) understand the radial distribution function

Only the tail of the radial distribution is wrong...

Conclusion

- We can analytically calculate the **tangential** velocity distribution (except for the high energy tail)
- We can analytically calculate the **radial** velocity distribution (except for the high energy tail)
- We would like to calculate the tail...