Halo Structure and Direct Detection

Annika Peter The Ohio State University

Slater et al. 2014

"you revolve around me as we fly around the galaxy"

—Kids Learning Tube, "The Sun"

http://infinity-imagined.tumblr.com/

Direct detection

Apollo 8 Shot. Image credit: NASA Image credit: LUX collaboration

Rates

Rates: p

Q

Rates: f(v)

dR/dQ

Rates: angular

Mayet+ 2016

Why is this an issue?

- Incorrect inference of particle properties.
- Internecine wars about detection vs. nondetection.

Kuhlen+ 2010

Why is this an issue?

- Incorrect inference of particle properties.
- Internecine wars about detection vs. nondetection.

Sloane+ 2016

The program

Uncertainty

- 1. ρ
- 2. f(v,t)—halo reference frame
- 3. Solar motion

Solution

- 1. Self-calibration
- 2. Beating neutrinos

NB: I will focus on time-independent direct detection & directional detection. Some of the uncertainties are worse for annual modulation.

Uncertainty

1. ρ

"A long time ago, in a galaxy (not so) far away..."

(we've been arguing since Kapteyn in the 1920's...)

1. ρ

Dark matter

Equilibrium solution from stellar motion

Summary: Garbari+ 2011

Simulations

2. f(v,t)

"From there to here,

here to there,

funny things are everywhere."

-- Dr. Seuss, *One Fish, Two Fish, Red Fish, Blue Fish*

f(v,t)

- Singular isothermal sphere
- Isotropic velocity distribution

 You got yourself a Gaussian-distributed "Standard Halo Model" (SHM)

Redbubble.com

Simulations: Dark matter only

Springel+ 2008

Vogelsberger+ 2009

Simulations: debris flows

Springel+ 2008

Simulations: baryons

bad except

out in tail.

Pillepich+ 2014

Simulations: baryons

See also: Kelso+2016, Sloane+2016

Simulations: baryons

Sloane+ 2016

3. Solar motion

"Here comes the Sun, Here comes the Sun." --The Beatles

Biggest uncertainty: LSR & solar motion

300 250 ŝ (km/ See: Reid+ 2014, Bovy+ 2012,2013 LSR Schoenrich & Binney 2010 ŧ 200 BTTG I 1985 1990 1995 2000 2005 year

Tremaine, "Back to the Galaxy II" conference, 2008

Solution

(Not going to talk about halo-independent methods for now.)

1. Self-calibration (WIMP astronomy!)

Modeling your known unknowns.

Peter 2011

More parameters for MultiNest

Go from: (m_X , ρ , σ_{SI} , σ_{SD} ...)

То

CRITICAL ELEMENT:

Need several different targets (break degeneracy w/mass)

 $[m_X, \rho, \{\sigma_i\}, \{f_j[v]\}]$

Parametrizations

Parametrizations

Orthogonal functions

Kavanagh & Green (several very nice papers!); plots from Peter+ 2014

Directional detection

Mayet+ 2016

Directional detection

100 signal, 0 background events. MIMAC-like experiment

Standard halo model input

50 GeV WIMP

Fix the direction of v_{lab}

Lee & Peter 2012

Combine w/solar WIMP searches

Kavanagh, Fornasa & Green 2014; see also Ferrer, Ibarra & Wild 2015

2. Beating neutrinos

"You can't shield from neutrinos."

---me

"Neutrino floor"

From Cushman+ 2013, based on work by Strigari & collaborators

Beating the neutrino floor

From Mayet+ 2016 review

Conclusion

"It's better to know how to learn than to know." ---Dr. Seuss

- Data AND simulations are getting better and better.
- Parametrize your ignorance
 ---You can have your cake and eat it, too.
- WIMP astronomy with only ~100 events (distributed across experiments).