Galaxies Growing Old: The Transition to Quiescence at 3 \times $10^{10} M_{\odot}$

Philip Taylor (ANU) with Christoph Federrath (ANU) & Chiaki Kobayashi (UK)

$3 \times 10^{10} \mathrm{M}_{\odot}$

• Kauffmann+o3 find sharp transition in star formation properties of SDSS galaxies at $M_* = 3 \times 10^{10} {\rm M}_{\odot}$

 ETGs and LTGs clearly separated in SFR – M_{*} plane

My Simulations

- $(25h^{-1}\text{Mpc})^3$ periodic box
- ICs have (240)³ each DM & gas
- Star formation, evolution, & feedback (Kobayashi+04,06,07, 11)
- BH formation and growth, & AGN feedback (Taylor & Kobayashi 14)

Modelling SFR of All Galaxies

$$\log f(M_{\rm BH}) = \begin{cases} k_1 \log M_{\rm BH} & M_{\rm BH} < M_b \\ k_2 \log M_{\rm BH} + (k_1 - k_2) \log M_b & M_{\rm BH} \ge M_b \end{cases}$$

Taylor, Federrath, Kobayashi 2017

 M_b

$$M_b \approx 2 - 5 \times 10^7 \mathrm{M}_{\odot}$$

 $M_{\rm BH} - M_{\rm bulge}$ relation

 $M_{\rm bulge} \approx 1 - 2 \times 10^{10} \rm M_{\odot}$

Other Implications

$$\log f(M_{\rm BH}) = \begin{cases} 0.00 & M_{\rm BH} < 10^{7.31} \\ -1.11(\log M_{\rm BH} - 7.31) & M_{\rm BH} \ge 10^{7.31} \end{cases}$$

SFR
$$\propto M_{\odot}^{0.21} \times s_{5}^{-0.17} \times M_{\rm gas}^{1.03} \times f(M_{\rm BH})$$

Weaker than implied by SFMS $\alpha \sim 0.75-1$ (e.g., Elbaz+11, Zahid+12, Renzini & Peng 15)

Other Implications

$$\log f(M_{\rm BH}) = \begin{cases} 0.00 & M_{\rm BH} < 10^{7.31} \\ -1.11(\log M_{\rm BH} - 7.31) & M_{\rm BH} \ge 10^{7.31} \end{cases}$$

SFR
$$\propto M_*^{0.21} \times s_5^{-0.17} \times M_{\rm gas}^{1.03} \times f(M_{\rm BH})$$

Weaker than implied by SFMS $\alpha \sim 0.75 - 1$ (e.g., Elbaz+11, Zahid+12, Renzini & Peng 15)

Weak, positive dependence on environment (e.g., Koyama+13)

Other Implications

$$\log f(M_{\rm BH}) = \begin{cases} 0.00 & M_{\rm BH} < 10^{7.31} \\ -1.11(\log M_{\rm BH} - 7.31) & M_{\rm BH} \ge 10^{7.31} \end{cases}$$

SFR

$$\propto M_*^{0.21} \times s_5^{-0.17} \times M_{gas}^{1.03} \times f(M_{BH})$$

Weaker than implied by SFMS $\alpha \sim 0.75-1$ (e.g., Elbaz+11, Zahid+12, Renzini & Peng 15)

 $SFR \propto M_{gas} \Rightarrow \Sigma_{SFR} \propto \Sigma_{gas}$ i.e. Kennicutt-Schmidt law.

Weak, positive dependence on environment (e.g., Koyama+13)

Comparison to Observations

Observational SFR, M_* , s_5 from GAMA. $M_{\rm HI}$ from ALFALFA.

Associate detections separated by $0^{\circ}01$ in RA and Dec.

Assume $M_{\rm gas} = M_{\rm HI}/0.75$

Conclusions

- By modelling simulated SFR in simple way, we find that BHs start to influence star formation in their host once they grow to about $2-5\times 10^7 {\rm M}_{\odot}$. This mass is purely emergent, and corresponds to a bulge mass $1-2\times 10^{10} {\rm M}_{\odot}$.
- Dependence of SFR on M_{st} weaker than implied by SFMS.
- Kennicutt Schmidt law with n=1 implied.
- Model matches fairly well with observations.