

Winds and feedback at high-z: Lessons learned and open questions

Nicole Nesvadba Institut d'Astrophysique Spatiale, Université Paris-Sud & CNRS

AGN feedback – motivation

Cosmic baryon cooling onto galaxies is *highly inefficient*: ~20% of cosmic baryon fraction at best (at $10^{12} M_{DM}$ halo mass), even less in higher and lower mass halos (see also Fuyan's talk this morning)

Winds and feedback at high-z

...

Two possible solutions

(1) Missing energy source?

Soltan (1982), Yu & Tremaine (2002):

SMBHs are nearly ubiquitous in galaxies

Silk & Rees (1998)

```
AGN lifetime (107-8 yrs)
```

- $E_{out} = 10^{46} \text{ erg s}^{-1} \times 10^{15} \text{ s} = 10^{61} \text{ erg}$
- ~ E_{bind} , few 10¹¹ M_s

AGN energy enough to unbind the host galaxy

(2) A problem with gas cooling?

- Heating through cosmological accretion
 Birnboim & Dekel (2006), Keres et al. (2005)
- Morphological quenching Martig et al. (2009)
- High stellar mass surface densities Compaction e.g., Dekel & Burkart (2014)
- Satellite quenching
- Energy dissipation within galaxies e.g., Nesvadba et al. (2010)

Do we really understand the physics of star-formation in galaxies well enough?

Gas-rich spiral/ spiral merger

AGN feedback in a nutshell

Sanders 1988, Hopkins 2006, Tadhunter 2005, Granato 2006, Croton 2006, Scannapieco 2004, Schawinski 2007, ...

High-z is important!

- Major growth phase of massive galaxies
- Main cosmic star-formation epoch
- Peak of unobscured cosmic QSO activity
- Epoch of most luminous radio AGN
- Properties of massive galaxies were put into place

 \rightarrow SMBHs in most massive high-z galaxies already near the low-z black-hole bulge relationships

... and high-z is also different

Hopkins-Sanders sequence deeply rooted in | classical hierarchical galaxy assembly scenario:

- role of mergers vs. clumpy disks in AGN fueling and feedback? (e.g., DeGraf et al. 2017)
- cosmic evolution of galaxy (major) merger rates?
- role of cosmic accretion,
- role of gradual galaxy assembly? E.g., cosmological zoom-in simulations: Powerful AGN feedback reduces infall along filament by 10% << 100% !! (e.g., Parai et al. 2017)

Questions raised:

- Do we understand star formation at high-z?
 (If not, then what can we know about the 'need' of AGN feedback?)
- How do intrinsic properties of high-z galaxies affect feedback efficiency?
- \rightarrow Suppress or enhance (positive feedback, e.g., Silk 2013)?
- \rightarrow Mechanisms of angular momentum loss and AGN fueling? (e.g.,
- \rightarrow Global AGN duty cycles, number densities, AGN / SF coordination?

Cosmic co-evolution of AGN & hosts

Harrison et al. (2016): "If AGN feedback is equally efficient at all redshifts, then how can it work at high-z with the higher sSFRs and gas mass surface densities?"

What does the M-σ relation really tell us?

Kormendy & Ho (2013), ARA&A

Central limit theorem instead of fueling and feedback processes?

 \rightarrow can explain structural parameters of ETGs

 \rightarrow tightening at high mass because of global uniformity of merger trees.

If associated with fueling / feedback, then put into place at high-z

 \rightarrow but classical Hopkins-Sanders-sequence like AGN play a minor role for galaxy growth.

 \rightarrow tightening at high mass because of global uniformity of merger trees.

Systematizing AGN feedback studies

Systematic studies and DM halo mass

Systematic studies: Mass selected SFGs

110 SINS, LUCI, GNIRS, KMOS^{3D} at z=2-3

Genzel et al. (2014), Forster-Schreiber et al. (2014)

- ~50% have MIR or X-ray or radio signatures of AGN,
 - few % at log M < 10-10.5
 - 15-30% at log $M_{stellar} > 11$
- at log $M_{stellar} \gtrsim 10.9$, 2/3 broad nucl. components
 - FWHM~450-5300 km s⁻¹ around nucleus
 - systemic line: FWHM=150-320 km s⁻¹.
 - mass loading ~ SFR
 - P = 5-10 x L_{SFR} / c

- Why are these signatures of AGN?
 - broad lines 2-3x more frequent in AGN hosts (down to X-ray / radio survey limits)
 - No H α excess near nucleus \rightarrow no circumnuclear starburst
 - Line ratios consistent with high-z AGN

What is driving the outflows? Energy analysis does not show clear results

Stacked spectrum of z~1.5 AGN ... and of a luminosity-matched sample of z=0.4 AGN \rightarrow very similar line profiles.

Efficiency of high-z AGN for gas blow-out?

Nesvadba et al (2017a, A&A 599, 123)

The SINFONI survey of powerful radio galaxies during the "Quasar Era"

- 49 HzRGs w/ [OIII] & Hβ, [OII] or [OIII], Hα, Hβ, [NII], [SII]
- about 200 sources known at z≥2 (Miley & De Breuck 2008)
- covering the bright end of the high-z radio luminosity function
- unique distinction jet / starburst

Winds and feedback at high-z

Spitzer/Herschel photometry for 24

Jet, QSO or starburst? Energy & Momentum

24 galaxies with SINFONI & mid to FIR SEDs

Nesvadba, Drouart, De Breuck et al. (2017), A&A 600,121

Compare kinetic energy, momentum in gas w/ input from star formation, AGN and radio source

Decompose FIR from AGN and star formation

(DecompIR, Mullaney et al. 2011)

Similar distributions exist for kinetic energy (see paper)

→ Only radio jets inject enough energy & momentum to power gas kinematics

Tests of hydrodynamic models

Winds and feedback at high-z

High and low-power radio galaxies

II. Low-power radio sources: P₅₀₀ ~ 10²⁶⁻²⁷ W Hz⁻¹:

Disks, winds, or both?

Smaller velocity gradients $\Delta v \sim 200-300 \text{ km s}^{-1}$ $\rightarrow M_{dyn} \sim 10^{11} \text{ M}_s \rightarrow \text{ disks?}$

But: well aligned with jet axis

- often irregular velocity fields/FWHM
- large line widths: 800 km s⁻¹

Localized outflows? High turbulence? → Bulk of the gas unlikely to escape

Winds vs. turbulence in HzRGs

Nesvadba et al. (2017, A&A 599, 123)

Birth environment of high-z AGN?

Canameras, NPHN et al. (2017a,b), A&A 600, L3 & A&A acc, astro-ph/1704.05853

"Ruby", z=3.0, L^{FIR} 2.6x10¹⁴ L_{sun}, NO bright AGN SF intensity ~2000 M_{sun} yr⁻¹ kpc⁻² μ ~ 10 – 40, beam < 100 pc source-plane

Evidence of suppression of SF in QSO

Cano-Diaz et al. (2012)

2QZ J002830-4281706, z=2.4

[OIII]5007 velocities & line widths

Hα morphology, avoids [OIII] Contours [OIII] velocity (left) & dispersion (right) X-ray selected $L_{bol} = 4 \times 10^{46} \text{ erg s}^{-1}$ $M_{WIM,[OIII]} = 10^8 M_{sun}$ $V_{max} = 2000 \text{ km s}^{-1}$

Residual H α in off-nuclear spectra, no [NII] seen

Cavity inflated by AGN wind? Leads to absence of star formation?

Evidence of bosted SF ...?

Cresci et al. (2014)

QSO @ z=1.6, XID 2028, Cosmos/XMM + high MIR flux \rightarrow high accretion rate

$$\begin{split} & \mathsf{L}_{bol} = 2 x 10^{46} \text{ erg s}^{\text{-1}}, \text{ SFR} = 275 \text{ M}_{sun} \text{ yr}^{\text{-1}} \text{ (PACS)} \\ & \mathsf{L}_{1.4} \text{=} 10^{24} \text{ W Hz}^{\text{-1}} \\ & \mathsf{M} = \text{few } 10^8 \text{ M}_{sun} \end{split}$$

Ensemble studies

FIR SED fitting, Herschel-Atlas

Quasars are near the main sequence,

for optically, radio-loud/radio-quiet, and X-ray selected sources.

SINS and other IFU surveys of optically selected SFGs

AGN hosts do not show significant offsets from the main sequence.

[Teresa's talk this morning: HzRGs on/below MS]

Winds are everywhere ...

Genzel et al. (2014), SINS UV/optical selected SF galaxies at z~2 w/ SINFONI IFU data: "The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGN identified by X-ray, optical, IR, or radio indicators."

Harrison et al. (2015), KMOS survey at z=0.4 & z~1.5 of 40 X-ray selected AGN:

"50% of the targets have ionized gas velocities indicative of gas that is dominated by outflows and/or highly turbulent material (i.e. overall line widths >~ 600 km s⁻¹). The most luminous half, L_x > 6x10⁴³ erg s⁻¹, have a >~2x higher incidence of such velocities."

Harrison et al. (2012), NIFS/SINFONI data of 8 ULIRGs w/ AGN at z=1.4-3.4:

"We find evidence in the 4 most luminous systems ($L_{[OIII]} > 10^{43}$ erg s⁻¹) for the signatures of large-scale energetic outflows. The four less luminous systems have lower quality data displaying weaker evidence for spatially extended outflows."

Nesvadba et al. (2017), SINFONI survey of **49** powerful radio-loud type II quasars at z~2-4.5 "All sources have complex gas kinematics with brad line widths up to 1300 km s⁻¹. About half have bipolar velocity fields with offsets of up to 1500 km s⁻¹."

+ individual targets, e.g., Cano-Diaz et al. (2012), Cresci et al. (2015), ...

De Graf et al. (2017): AMR (Ramses) simulations:

"We find this clumpy accretion to more efficiently fuel high-redshift black-hole growth [...] which allows the black hole to efficiently evacuate gas from the central region of the galaxy, and suppressing star formation by as much as a factor 2."

... but what are they really good for?

Harrison et al. (2016), ALMA 850 imaging of **5** X-ray AGN at z=1.4-4.5, $L_x > 10^{42}$ erg s⁻¹:

"Our study suggests that the kpc-scale spatial distribution and surface density of star formation in high-redshift star-forming galaxies is the same irrespective of the presence of Xray detected AGN."

Stanley et al. (2017): **3000 optically selected QSOs w/ Herschel/ATLAS photometry + WISE**, z=0.2-2.5: "We find that the mean SFRs of our QSO (and radio-loud AGN) samples are consistent with galaxies on the main sequence."

Drouart et al. (2014) **70 HzRGs w/ Spitzer & Herschel photometry**: "The mean sSFRs of radio galaxies at z>2.5 are higher than those of mainsequence galaxies, but are similar or perhaps lower than them at z<2.5." But: Only 30% have detected SB components (~ z=0, Tadhunter et al. 2013)

Genzel et al. (2014): UV/optically selected galaxies: "Our galaxies lie on the main sequence of starforming galaxies at their redshift."

The 'hard problem of AGN feedback' – how do you establish the link with star formation ?

